Saturday, May 9, 2015

"Engineering the Perfect Baby"

"As I listened to Yang, I waited for a chance to ask my real questions: Can any of this be done to human beings? Can we improve the human gene pool? The position of much of mainstream science has been that such meddling would be unsafe, irresponsible, and even impossible. But Yang didn’t hesitate. Yes, of course, she said. In fact, the Harvard laboratory had a project under way to determine how it could be achieved. She flipped open her laptop to a PowerPoint slide titled “Germline Editing Meeting.”...
So far, caution and ethical concerns have had the upper hand. A dozen countries, not including the United States, have banned germ-line engineering, and scientific societies have unanimously concluded that it would be too risky to do. The European Union’s convention on human rights and biomedicine says tampering with the gene pool would be a crime against “human dignity” and human rights.
But all these declarations were made before it was actually feasible to precisely engineer the germ line. Now, with CRISPR, it is possible...
Feng said the efficiency with which CRISPR can delete or disable a gene in a zygote is about 40 percent, whereas making specific edits, or swapping DNA letters, works less frequently—more like 20 percent of the time. Like a person, a monkey has two copies of most genes, one from each parent. Sometimes both copies get edited, but sometimes just one does, or neither. Only about half the embryos will lead to live births, and of those that do, many could contain a mixture of cells with edited DNA and without. If you add up the odds, you find you’d need to edit 20 embryos to get a live monkey with the version you want.
That’s not an insurmountable problem for Feng, since the MIT breeding colony will give him access to many monkey eggs and he’ll be able to generate many embryos. However, it would present obvious problems in humans...
Tilly predicted that the whole end-to-end technology—cells to stem cells, stem cells to sperm or egg and then to offspring—would end up being worked out first in animals, such as cattle, either by his lab or by companies such as eGenesis, the spinoff from the Church lab working on livestock...
If germ-line engineering becomes part of medical practice, it could lead to transformative changes in human well-being, with consequences to people’s life span, identity, and economic output. But it would create ethical dilemmas and social challenges. What if these improvements were available only to the richest societies, or the richest people? An in vitro fertility procedure costs about $20,000 in the United States. Add genetic testing and egg donation or a surrogate mother, and the price soars toward $100,000.
Others believe the idea is dubious because it’s not medically necessary. Hank Greely, a lawyer and ethicist at Stanford University, says proponents “can’t really say what it is good for.” The problem, says Greely, is that it’s already possible to test the DNA of IVF embryos and pick healthy ones, a process that adds about $4,000 to the cost of a fertility procedure...
At the meeting, along with ethicists like Greely, was Paul Berg, a Stanford biochemist and Nobel Prize winner known for having organized the Asilomar Conference, a historic 1975 forum at which biologists reached an agreement on how to safely proceed with recombinant DNA, the newly discovered method of splicing DNA into bacteria.
Should there be an Asilomar for germ-line engineering? Doudna thinks so, but the prospects for consensus seem dim. Biotechnology research is now global, involving hundreds of thousands of people. There’s no single authority that speaks for science, and no easy way to put the genie back in the bottle. Doudna told me she hoped that if American scientists agreed to a moratorium on human germ-line engineering, it might influence researchers elsewhere in the world to cease their work."
http://www.technologyreview.com/featuredstory/535661/engineering-the-perfect-baby/?utm_campaign=newsletters&utm_source=newsletter-daily-all&utm_medium=email&utm_content=20150306

Wow. It's hard to wade into this, although it's something that every biology students talks about at some point. I think that major, major concern is the real fact that this is going to be used by wealthy people to have babies who don't have health problems and who might have more traits that will make them more likely to excel in our society (I think it's a little far to say 'genes that raise IQ' because that is such a hugely complicated trait that is controlled by a huge system of genes and environmental conditions that I don't think gene editing could make any sort of linear change to it). 
 <<add in from 4/23 email>>

Like, super not subtle that the designer-baby example is always blue eyes and blond hair. We still have a very specific image of human superiority.

(credit to KM)

No comments:

Post a Comment