"We believe that an essential protection against flawed ideas is triangulation3. This is the strategic use of multiple approaches to address one question. Each approach has its own unrelated assumptions, strengths and weaknesses. Results that agree across different methodologies are less likely to be artefacts.
Isn’t this how science is meant to operate? Perhaps so, but scientists in today’s hyper-competitive environment often lose sight of the need to pursue distinct strands of evidence.
The problem was aptly described in May 2017, when cancer researcher William Kaelin lamented that the goal of the scientific paper had shifted from testing narrow conclusions in multiple ways to making a broadening series of assertions, each based on limited evidence4. Consequently, he said, “papers are increasingly like grand mansions of straw, rather than sturdy houses of brick”...
An illuminating example is the oft-observed J-shaped curves that chart correlation between a condition and health outcome5.
For instance, multiple studies show that people who consume low levels of alcohol are healthier than heavy drinkers and teetotallers, leading several researchers to conclude that moderate alcohol consumption promotes health. But other factors, such as unhealthy people being advised to give up drinking, would explain the same shape. Similarly, repeated observations that being slightly overweight is associated with the highest life expectancy might be explained by illness (including processes leading up to the manifestation of a disease, which itself can result in reduced weight); by physicians treating overweight individuals more aggressively; and by other favourable characteristics of overweight individuals, such as lower smoking rates...
To support triangulation, we recommend a shift to a contributorship model, similar to the credits that roll at the end of a film — a long list of individuals with their contributions described fully and specifically8. This will require academics to potentially forgo ‘senior authorship’ positions. It would also make it easier for early-career researchers to specify their unique contribution to a paper when applying for promotion or another position."
FB:" Triangulation means explicitly choosing analytical approaches that depend on different assumptions. For example, if a woman’s partner smokes during her pregnancy, many of the same confounders apply as in maternal smoking, but the association with lower birth weight is much weaker. Birth weight can also be analysed according to levels of cigarette taxation across US states, which reduces the effects of confounders. And analyses can compare the birth weights of siblings whose mother smoked during one pregnancy but not another.
Mendelian randomization is a technique developed specifically to probe causal relationships. In cohorts grouped according to whether or not people carry a genetic variant associated with greater cigarette consumption in those who smoke, mothers who smoke and carry the variant tended to have babies who weighed less; non-smokers with the same variant did not. Taken together, these studies make it clear that maternal smoking affects birth weight directly6."
No comments:
Post a Comment